Version Information:
BasicSR: 1.3.2
PyTorch: 2.4.1+cu121
TorchVision: 0.19.1+cu121
torch.distributed.DistBackendError: NCCL error in: ../torch/csrc/distributed/c10d/NCCLUtils.hpp:275, invalid usage (run with NCCL_DEBUG=WARN
for details), NCCL version 2.20.5
[rank4]: ncclInvalidUsage: This usually reflects invalid usage of NCCL library.
[rank4]: Last error:
[rank4]: Duplicate GPU detected : rank 4 and rank 0 both on CUDA device 1000
tensorrt and python-tensorrt update error (missing cuda 13?)
mbn info cuda -q | grep -Ev 'Name|Repository|Packager'
Branch : archlinux
Version : 13.0.2-1
Build Date : Fri 10 Oct 2025 04:38:56
Branch : unstable
Version : 13.0.2-1
Build Date : Fri 10 Oct 2025 04:38:56
Branch : testing
Version : 13.0.2-1
Build Date : Fri 10 Oct 2025 04:38:56
Branch : stable
Version : 12.9.1-2
Build Date : Fri 01 Aug 2025 15:19:27
mbn can be found in the manjaro-check-repos package
To switch to Testing branch:
sudo pacman-mirrors --api --set-branch testing
or, to switch to Unstable branch:
sudo pacman-mirrors --api --set-branch unstable
After you changed the branch, rebuild the mirrorlist and update your packages:
Or… wait until the package reaches Stable branch. I’m afraid we are unable to give an accurate estimate of when that will be. Check the respective (branch) Update announcements, or check the Packages link to monitor its status at any time.
Alternately, install the manjaro-check-repos package to use mbn, which achieves the same thing.